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Abstract

In this paper, complex potentials for the solution of two-dimensional, in-plane, linear piezoelectric boundary value

problems are presented. These potentials are only valid for a special set of piezoelectric properties that have been

identified as being useful in nonlinear ferroelectric constitutive laws. In contrast to more general solution procedures

like the Stroh or Lekhnitskii formalisms, the complex potentials derived here are dependent on explicit, closed-form

combinations of the piezoelectric material properties. Under either plane strain or plane stress conditions, three

complex potentials are required to determine the full set of electrical and mechanical field quantities. The components

of stress, strain, displacement, electric field, electric displacement, and electric potential will all be given in terms of these

three potentials. To demonstrate the solution to a boundary value problem with these potentials, the asymptotic fields

near a crack tip in these materials are presented in closed form.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the past few decades, the analysis of linear piezoelectric boundary value problems has become

relatively well-developed (Barnett and Lothe, 1975; Deeg, 1980; Sosa, 1991, 1992; Suo et al., 1992; Pak,

1992; Park and Sun, 1995). These works are essentially extensions of the anisotropic elasticity formalisms of

Lekhnitskii (1950) or Eshelby et al. (1953) and Stroh (1958). More recently, efforts have been made to

establish non-linear phenomenological constitutive laws for ferroelectric materials (Kamlah, 2001; Landis,

2002; McMeeking and Landis, 2002). These types of constitutive laws have potential use for the analysis of
actuator and sensor devices and for the study of the electromechanical fracture behavior of ferroelectrics.

An interesting feature of ferroelectric ceramics that must be incorporated into these non-linear constitutive

laws is that the elastic, dielectric and most importantly the piezoelectric properties of the material can

change as the remanent polarization and strain in the material evolve. This is in contrast to plasticity in
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polycrystalline metals, where the elastic properties of the material are essentially independent of the plastic

deformation.

A considerable simplification to these non-linear constitutive laws is made if the linear properties of the

material are assumed to take the following forms, Landis (2002),
sEijkl ¼
1þ m
2E

ðdikdjl þ dildjkÞ �
m
E
dijdkl ð1:1Þ

je
ij ¼ jdij ð1:2Þ

dkij ¼
P r

P0
d33mkmimj

�
þ d31mkkij þ

d15
2

mikjk
�

þ mjkik
��

ð1:3Þ
where dij is the Kronecker delta, the Cartesian components of the remanent polarization vector are P r
i , its

magnitude is P r ¼ ffiffiffiffiffiffiffiffiffi
P r
i P

r
i

p
, the components of its direction are mi ¼ P r

i =P
r and the components of the

transversely isotropic second rank tensor k are kij ¼ dij � mimj. The components of the elastic compliance

measured at constant electric field are sEijkl, the dielectric permittivities at constant stress are je
ij, and the

piezoelectric coefficients are dkij. Finally, E and m are the Young�s modulus and Poisson�s ratio of the

material at constant electric field, j is the dielectric permittivity at constant stress, and d33, d31 and d15 are
the piezoelectric coefficients in standard Voight notation. Note that the elastic compliance and dielectric

permittivity are isotropic tensors, and the piezoelectric tensor is transversely isotropic about the remanent

polarization direction m.
The reason why the forms for the linear properties given in Eqs. (1.1)–(1.3) simplify the non-linear

constitutive theories for ferroelectrics is that in these theories, derivatives of the linear properties with

respect to the remanent polarization and remanent strain components are required, Landis (2002). In-

spection of (1.1)–(1.3) yields the fact that none of the properties depends on the remanent strain compo-

nents and hence all derivatives with respect to the remanent strains are zero. Furthermore, the elastic

compliance and dielectric permittivity do not depend on the remanent polarization, so the derivatives of

these tensors with respect to the P r
i are zero as well. Finally, the piezoelectric properties dkij do depend on P r

i ,

and this is a physical requirement for ferroelectrics. This feature manifests itself in the fact that unpoled
ferroelectrics are not piezoelectric, but poled ferroelectrics exhibit piezoelectricity. However, one final

simplification can be made to the piezoelectric properties that further simplifies the non-linear ferroelectric

constitutive laws. This simplification is obtained by requiring that
o2dkij
oP r

moP r
n

¼ 0 ! d15 ¼ d33 � d31 ð1:4Þ
While mathematical simplicity is a noble goal in any model of a physical system, such desire for simplicity is

always superseded by the need for physical authenticity. Hence, the question as to whether d15 ¼ d33 � d31 is
a reasonable approximation must be addressed. The answer to this question is, in fact, yes for poled
polycrystalline ferroelectric ceramics. For example, the properties for poled barium titanate are

d33 ¼ 5:73� 10�11 C/N, d31 ¼ �2:37� 10�11 C/N and d15 ¼ 8:10� 10�11 C/N as reported by Berlincourt

and Jaffe (1958). Also, the properties reported by Deeg (1980) and Pak (1992) for PZT-5H poled ceramic

are d33 ¼ 3:15� 10�10 C/N, d31 ¼ �1:28� 10�10 C/N and d15 ¼ 4:82� 10�10 C/N. Hence, it is reasonable to

make the assumption that d15 ¼ d33 � d31 for poled ceramics. Note that it is not advisable to make this

assumption for single crystal ferroelectrics.

Given the properties in Eqs. (1.1)–(1.3) along with the simplification that d15 ¼ d33 � d31, it is useful to
develop a linear piezoelectricity theory for in-plane electromechanical loading on such a material. The
initial procedure to solve this problem is to apply one of the well-established formalisms for anisotropic

linear piezoelectricity. However, the properties in (1.1)–(1.3) with d15 ¼ d33 � d31 are mathematically
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degenerate, and therefore the standard Stroh or Lekhnitskii procedures must be modified to account for

this degeneracy. In the following, an approach similar to those of Stroh and Lekhnitskii is used to de-

termine complex potentials that will solve in-plane piezoelectricity problems with the material properties

described above. One of the benefits of these assumed forms of the piezoelectric properties is that the
solutions to the in-plane problems can be given in closed-form without the need for the numerical solution

of an eigenvalue problem. Finally, looking forward to the fact that non-linear small scale switching analyses

will eventually be performed with the constitutive law mentioned above, solutions for the asymptotic crack

tip fields for both conducting and impermeable boundary conditions will be obtained with these complex

potentials.

The remainder of this paper is organized as follows. Section 2 outlines the equations governing a two-

dimensional, in-plane, linear piezoelectric boundary value problem. Section 3 then describes the solution

procedures for these equations in both plane strain and plane stress. Section 4 applies the complex
potentials derived in Section 3 to the solution of the asymptotic crack tip solution. Finally, a short dis-

cussion of the results is given in Section 5.
2. Governing equations

In this section the equations governing a linear piezoelectric boundary value problem will be presented.

Throughout this paper it is assumed that the material is poled along the x3 direction, which forms an angle
of b with the y-direction as in Fig. 1. The mechanical field equations will be presented first, followed by the

electrical equations. In the absence of body forces, mechanical equilibrium in the volume of the body is

given as
Fig. 1.

angle b
used fo
orxx

ox
þ orxy

oy
¼ 0 ð2:1Þ
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y
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β

The coordinate systems for the analysis boundary value problems where the remanent polarization direction lies at an arbitrary

from the y-axis. Note that the x3-axis is parallel to the remanent polarization direction by convention. Furthermore, the indices

r Voight notation are base on this 1-2-3 system.
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orxy

ox
þ oryy

oy
¼ 0 ð2:2Þ
where rxx, ryy and rxy are Cartesian components of the Cauchy stress tensor. On the surface of the body the
stresses must be in equilibrium with the surface tractions as
tx ¼ rxxnx þ rxyny ð2:3Þ

ty ¼ rxynx þ ryyny ð2:4Þ

where tx, ty , nx and ny are the components of the traction vector and the outward unit vector normal to the

surface. The strain–displacement relationships are
exx ¼
oux
ox

ð2:5Þ

eyy ¼
ouy
oy

ð2:6Þ

exy ¼
1

2

oux
oy

�
þ ouy

ox

�
ð2:7Þ
where exx, eyy and exy are the components of the infinitesimal strain tensor, and ux and uy are the components

of the displacement vector.

The electrical equations are as follows. In the absence of a free charge density distribution, Guass� law in
the volume of the material dictates that
oDx

ox
þ oDy

oy
¼ 0 ð2:8Þ
where Dx and Dy are the components of the electric displacement vector. On the surface of the body,
x ¼ �Dxnx � Dyny ð2:9Þ

where x is the surface free charge density. Finally, the electric field components, Ex and Ey , can be derived

from the electric potential / as
Ex ¼ � o/
ox

ð2:10Þ

Ey ¼ � o/
oy

ð2:11Þ
Eqs. (2.1)–(2.11) represent eight governing equations for 13 independent field quantities. Note that (2.3),

(2.4) and (2.9) are surface or boundary equations. The remaining five equations required to close the loop on

a given boundary value problem are the constitutive equations for the piezoelectric material. As noted
previously, it is assumed that the material is poled in the x3-direction. Furthermore, the piezoelectric

properties take on the special forms described in Section 1. Specifically, the constitutive law can be written as
exx ¼
1

E
rxx �

m
E
ryy �

m
E
rzz þ ðd33 sin bÞEx þ ðd31 cos bÞEy ð2:12Þ

eyy ¼ � m
E
rxx þ

1

E
ryy �

m
E
rzz þ ðd31 sin bÞEx þ ðd33 cos bÞEy ð2:13Þ

ezz ¼ � m
E
rxx �

m
E
ryy �

1

E
rzz þ ðd31 sin bÞEx þ ðd31 cos bÞEy ð2:14Þ
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exy ¼
1þ m
E

rxy þ
d33 � d31

2
ðEx cos bþ Ey sin bÞ ð2:15Þ

Dx ¼ ðd33 sin bÞrxx þ ðd31 sin bÞryy þ ðd31 sin bÞrzz þ ðd33½ � d31Þ cos b�rxy þ jEx ð2:16Þ

Dy ¼ ðd31 cos bÞrxx þ ðd33 cos bÞryy þ ðd31 cos bÞrzz þ ðd33½ � d31Þ sin b�rxy þ jEy ð2:17Þ
Here E and m are Young�s modulus and Poisson�s ratio of the material measured at constant electric field.

Note that an E without a subscript is used to denote Young�s modulus, and an E with a subscript is used to
denote an electric field component. The out of plane axial stress is denoted as rzz. The piezoelectric co-

efficients are d33 and d31. Here, the 1, 2, 3 notation follows standard Voight notation for piezoelectric

materials with the three directions aligned with the remanent polarization. Also note that in Voight no-

tation, this form of the material properties assumes that d15 ¼ d33 � d31. Finally, j is the dielectric per-

mittivity of the material measured at constant stress. Again, we emphasize that Eqs. (2.12)–(2.17) are not

the most general form for a poled ceramic, but rather a very specific special form of the linear constitutive

behavior which is useful within nonlinear material laws for ferroelectrics described in Section 1.

Lastly, a few caveats should be mentioned when applying Eqs. (2.1)–(2.17) to poled ferroelectrics. First,
these equations are valid for a material sample with a uniform distribution of remanent polarization and

therefore a uniform distribution of piezoelectric properties. Furthermore, the strain and electric displace-

ment components appearing in these equations are actually changes from the zero stress and zero electric

field remanent configuration. This also implies that when there is no stresses or electric fields applied to the

sample, there will be a surface free charge density on any surface with a component of its unit normal

parallel to the remanent polarization direction. Hence, the surface free charge density x appearing in Eq.

(2.9) is actually the level of free charge above the reference level of x0 ¼ �P r
i ni which is required to

equilibrate the initial remanent polarization. Finally, the constitutive equations are only valid in the ab-
sence of domain switching. In other words the remanent polarization and remanent strain must remain

fixed at all points in the body.
3. Solution procedure

3.1. Plane strain

For the plane strain problem, the axial strain normal to the x–y plane is set to zero, and the out of plane

axial stress can be solved as
rzz ¼ mðrxx þ ryyÞ � Ed31ðEx sin bþ Ey cos bÞ ð3:1Þ
Now the Airy�s stress function v is introduced such that the equilibrium equations, (2.1) and (2.2), are

satisfied if
rxx ¼
o2v
oy2

ð3:2Þ

ryy ¼
o2v
ox2

ð3:3Þ

rxy ¼ � o2v
oxoy

ð3:4Þ
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Furthermore, Eqs. (2.5)–(2.7) can be combined into a compatibility equation as
o2exx
oy2

þ o2eyy
ox2

� 2
o2exy
oxoy

¼ 0 ð3:5Þ
Now Eqs. (3.2)–(3.4) and (2.6) can be substituted into (3.1) and the constitutive Eqs. (2.12)–(2.17). Then,

the constitutive equations for the strains and electric displacements can be substituted into the compatibility

equation (3.5) and Gauss� law (2.8). Eqs. (3.5) and (2.8) then result in two governing partial differen-
tial equations for the Airy�s stress function and the electric potential. The final simplified forms for these

equations are as follows:
1� m2

E
r4v� d31ð1þ mÞ sin b

o

ox

�
þ cos b

o

oy

�
r2/ ¼ 0 ð3:6Þ

d31ð1þ mÞ sin b
o

ox

�
þ cos b

o

oy

�
r2v� jr2/þ Ed2

31 sin b
o

ox

�
þ cos b

o

oy

�2

/ ¼ 0 ð3:7Þ
where r2 is the two-dimensional Laplacian operator, and r4 ¼ r2r2 is the biharmonic operator. The

general solution to these equations can be found by taking v and / to be functions of a complex variable

zp ¼ xþ py (p is complex) in the following ways
v ¼ avf ðzpÞ ð3:8Þ

/ ¼ a/f 0ðzpÞ ð3:9Þ

where f 0ðzpÞ ¼ df =dzp. Using the relationships
o

ox
½f ðzpÞ� ¼ f 0ðzpÞ ð3:10Þ

o

oy
½f ðzpÞ� ¼ pf 0ðzpÞ ð3:11Þ
Eqs. (3.8) and (3.9) can be substituted into (3.6) and (3.7). This results in an eigenvalue problem with p as

the eigenvalue and ðav; a/Þ as the associated eigenvector. The solutions for the eigenvalues are
p�1;�2;�3 ¼ �i;�i;
ke sin b cos b� i

ffiffiffiffiffiffiffiffiffiffiffiffi
1� ke

p

1� ke cos2 b
ð3:12Þ
where i ¼
ffiffiffiffiffiffiffi
�1

p
and the solutions �i have been explicitly repeated to indicate that a double root exists.

Furthermore, the plane strain electromechanical coupling coefficient ke is
ke ¼
2Ed2

31

jð1� mÞ ð3:13Þ
Note that the system of Eqs. (3.6) and (3.7) remains elliptic if ke < 1. Furthermore, this condition is au-

tomatically satisfied if the material is stable, i.e. if any set of applied stresses and electric fields leads to

positive stored energy in the material. Proof of this fact is readily obtained by noting that the eigenvalues of

the material matrix relating the subset ðexx; ezz;DyÞ to ðrxx; rzz;EyÞ must all be positive for a stable material.

The third set of eigenvalues will be renamed such that
pe ¼
ke sin b cos bþ i

ffiffiffiffiffiffiffiffiffiffiffiffi
1� ke

p

1� ke cos2 b
and �ppe ¼

ke sin b cos b� i
ffiffiffiffiffiffiffiffiffiffiffiffi
1� ke

p

1� ke cos2 b
: ð3:14Þ
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Throughout this work, an overbar will always represent the complex conjugate of the variable below. Note

that double roots exist in Eq. (3.12), and these identical eigenvalues do not have distinct eigenvectors

associated with them. This fact implies that a second solution of a form different from Eqs. (3.8) and (3.9),

corresponding to the second set of eigenvalues at �i, must be determined. This second solution takes the
form
v ¼ av�zzf ðzÞ þ bvzgð�zzÞ ð3:15Þ

/ ¼ a/f ðzÞ þ b/gð�zzÞ ð3:16Þ

where z ¼ xþ iy and �zz ¼ x� iy. Finally, by applying the fact that both v and / are real, it can be shown

that the general solution to Eqs. (3.4) and (3.5) takes the form
v ¼ Re ½F ðzÞ� þRe ½�zzGðzÞ� þRe ½HðzeÞ� ð3:17Þ

/ ¼ � 4ð1þ mÞ
Ed31

Re ðsin b½ � i cos bÞGðzÞ� þ 1� m
Ed31

Re
p2e þ 1

sin bþ pe cos b
H 0ðzeÞ

� �
ð3:18Þ
Note that F and G are analytic functions of the variable z ¼ xþ iy, and H is an analytic function of the

variable ze ¼ xþ pey.
Application of Eqs. (3.2)–(3.4) and (2.10) and (2.11) allows for the determination of the stress and

electric field components as
rxx ¼ �ReF 00 þRe ð2G0 � �zzG00Þ þRe ðp2eH 00Þ ð3:19Þ

ryy ¼ ReF 00 þRe ð2G0 þ �zzG00Þ þReH 00 ð3:20Þ

rxy ¼ ImF 00 þ Im ð�zzG00Þ �Re ðpeH 00Þ ð3:21Þ

Ex ¼
4ð1þ mÞ
Ed31

Re ðsin b
�

� i cos bÞG0	� 1� m
Ed31

Re
p2e þ 1

sin bþ pe cos b
H 00

� �
ð3:22Þ

Ey ¼ � 4ð1þ mÞ
Ed31

Im ðsin b
�

� i cos bÞG0	� 1� m
Ed31

Re
p3e þ pe

sin bþ pe cos b
H 00

� �
ð3:23Þ
The determination of the displacements requires the exploitation of the Cauchy–Riemann conditions, the

constitutive equations, and strain–displacement relations. It can be shown that to within a rigid body motion
E
1þ m

ux ¼ Re



�F 0 þ 7

�
þ 4

d33 � d31
d31

sin bðsin b� i cos bÞ
�
G� �zzG0

� 1

�
þ 1� m
1þ m

d33 � d31
d31

sin b
sin bþ pe cos b

�
H 0

�
ð3:24Þ

E
1þ m

uy ¼ Im F 0



þ 7

�
þ 4

d33 � d31
d31

cos bðcos bþ i sin bÞ
�
Gþ �zzG0

�

�Re pe

�

þ 1� m
1þ m

d33 � d31
d31

ðp2e þ 1Þ cos b
sin bþ pe cos b

�
H 0

�
: ð3:25Þ
Finally, the strain components can either be determined from the stresses and electric fields through the

constitutive law (2.12)–(2.15), or from the displacements through Eqs. (2.5)–(2.7). Also, the electric dis-
placement components can be determined from the stress and electric field components through (2.16) and

(2.17).
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3.2. Plane stress

For the plane stress problem rzz ¼ 0. Eqs. (3.2)–(3.5) are still valid and the procedure for obtaining the

governing equations for v and / is identical to that used in the plane strain case. The resulting forms of the
compatibility equation and Gauss� law are
1

E
r4v� d31 sin b

o

ox

�
þ cos b

o

oy

�
r2/ ¼ 0 ð3:26Þ

d31 sin b
o

ox

�
þ cos b

o

oy

�
r2v� jr2/ ¼ 0 ð3:27Þ
Following the solution procedures described previously, three sets of eigenvalues analogous to those found

in Eq. (3.12) exist. However, for the eigenvalues associated with the repeated roots at �i there exist two

distinct sets of eignevectors. Therefore, the solution to Eqs. (3.26) and (3.27) has the form
v ¼ Re ½P ðzÞ� þRe ½QðzrÞ� ð3:28Þ

/ ¼ �Im ½S0ðzÞ� þ d31
j

Re ðsin b
�

þ pr cos bÞQ0ðzrÞ
	

ð3:29Þ
where
zr ¼ xþ pry; pr ¼
kr sin b cos bþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr

p

1� kr cos2 b
; and kr ¼

Ed2
31

j
: ð3:30Þ
Here, the governing equations remain elliptic if kr < 1. As for the case of plane strain, this condition

is automatically satisfied if the material is stable. Proof of this fact can be obtained by noting that the

eigenvalues of the material matrix relating ðexx;DyÞ to ðrxx;EyÞ must all be positive for a stable material.
Again, note that the potentials P and S are analytic functions of z and Q is an analytic function of zr. For

plane stress, the stress and electric field components are given as
rxx ¼ �ReP 00 þRe ðp2rQ00Þ ð3:31Þ

ryy ¼ ReP 00 þReQ00 ð3:32Þ

rxy ¼ ImP 00 �Re ðprQ00Þ ð3:33Þ

Ex ¼ ImS00 � d31
j

Re ðsin b
�

þ pr cos bÞQ00	 ð3:34Þ

Ey ¼ ReS00 � d31
j

Re prðsin b
�

þ pr cos bÞQ00	 ð3:35Þ
Finally, to within a rigid body motion, the displacements are given as
E
1þ m

ux ¼ �ReP 0 þ 1

1þ m
Re p2r

�

� m� krðsin bþ pr cos bÞ pr cos b

�
þ d33
d31

sin b

��
Q0
�

þ Ed31
1þ m

Re cos b

��
� i

d33
d31

sin b

�
S0
�

ð3:36Þ
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E
1þ m

uy ¼ ImP 0 þ 1

1þ m
Re

1

pr

�

� prm�

kr
pr

ðsin bþ pr cos bÞ
d33
d31

pr cos b
�

þ sin b

��
Q0
�

þ Ed31
1þ m

Im
d33
d31

cos b

��
� i sin b

�
S0
�

ð3:37Þ
3.3. Discussion

In this section governing equations for the Airy�s stress function v and the electric potential / have been
solved using complex variable methods. This is in contrast with the Stroh approach, which solves governing

equations for the displacements ux and uy and the electric potential, or the approach of Sosa (1991) who

solved equations for Airy�s stress function and an induction potential w that was used to derive electric

displacement components. An approach similar to that of Sosa, but along the lines of Lekhnitskii where the

single Airy�s stress function v is replaced by two components of its vectorial counterpart can also be used.

Finally, a fourth approach using displacements and the induction potential could be applied to the problem

as well. Obviously, these seemingly different methods are intimately related to one another since they each

solve the same problem. The reasons why one approach is or should be chosen over another involve the
simplicity with which the constitutive law can be represented, and the types of boundary conditions that are

presented in a given problem. For example, for boundary value problems where only tractions and electric

potentials are applied to the surface, the approach using v and / offers a small advantage over the others

when analytical solutions are possible. However, since the eigenvalues and eigenvectors are in many cases

determined numerically for general forms of the piezoelectric properties, we emphasize that this advan-

tage is slight. The primary reason for using v and / in this work is due to the specific form of the linear

piezoelectric properties, i.e. Eqs. (2.12)–(2.17).

Finally, note that the stresses for the plane stress case in Eqs. (3.31)–(3.33) depend on only two of the
three complex potentials. This fact implies that for problems where the mechanical boundary conditions

only contain specified tractions, then the two potentials P ðzÞ and QðzrÞ are not dependent on the electrical

boundary conditions specified in the problem. This feature of the plane stress solutions will be illustrated in

the next section in Tables 3 and 4, where the coefficients of P ðzÞ and QðzrÞ are shown to be independent of

the electrical crack face boundary conditions.
4. Asymptotic crack tip fields

Due to the inherent brittleness of piezoelectric ceramics, the fracture behavior of these materials has been

the topic of considerable of study, (Sosa, 1991; Suo et al., 1992; Pak, 1992; Dunn, 1994; Park and Sun,

1995; McMeeking, 2001 among others). In this section, the complex potentials derived in Section 3 will

be used to determine the electrical and mechanical fields near the tip of a traction free crack in a linear

piezoelectric material with the properties described in Section 1. The problem will be solved for both

electrically conducting and electrically impermeable crack face boundary conditions. Full solutions will be

given for a material poled perpendicular to the crack plane and for a material poled parallel to the crack
plane. Finally, the Irwin matrix, which relates the energy release rate to the mechanical and electrical in-

tensity factors, will be given for both the conducting and impermeable electrical conditions and arbitrary

orientation of the crack with respect to the poling direction.

Fig. 2 is an illustration of the geometry to be analyzed. The traction free boundary conditions imply that
tx ¼ ty ¼ 0 ! rxy ¼ ryy ¼ 0 on h ¼ �p: ð4:1Þ



 
 

Pr

x

y

β

θ

r

Fig. 2. The coordinate systems for the analysis of the asymptotic crack tip fields in Section 4. The analyses of the complex potentials in

Section 4 only give explicit results for b ¼ 0 and b ¼ p=2. However, the results for the Irwin matrices given in Table 5 are valid for any

b through the use of Eqs. (4.78)–(4.83).
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Then, the standard stress intensity normalizations imply that
ryy ¼
KIffiffiffiffiffiffiffi
2pr

p on h ¼ 0 ð4:2Þ

rxy ¼
KIIffiffiffiffiffiffiffi
2pr

p on h ¼ 0 ð4:3Þ
where KI and KII are the mode I and mode II stress intensity factors. For the electrically conducting crack,
/ ¼ 0 ! Ex ¼ 0 on h ¼ �p ð4:4Þ

Ex ¼
KEffiffiffiffiffiffiffi
2pr

p on h ¼ 0 ð4:5Þ
Finally, for the electrically impermeable crack,
x ¼ 0 ! Dy ¼ 0 on h ¼ �p ð4:6Þ

Dy ¼
KDffiffiffiffiffiffiffi
2pr

p on h ¼ 0 ð4:7Þ
KE and KD are the electric field and electric displacement intensity factors. KD is also referred to as KIV, Suo

et al. (1992). Note that (4.4)–(4.7) will not both be satisfied within a given problem, (4.4) and (4.5) will be

satisfied for the conducting crack and (4.6) and (4.7) will hold for the impermeable crack. However, (4.1)–

(4.3) are valid for both electrical crack types. Also note that no physical crack is actually impermeable.

However, the condition given by (4.6) is valid for the determination of the fields asymptotically close to the

crack tip. The consideration of a permeable crack simply affects the level of the intensity factor KD. For
more details on the treatment of permeable cracks see the works of Dunn (1994) and McMeeking (2001).

In all cases we are interested in the dominant terms near the crack tip, i.e. the most singular terms.

However, we will enforce the constraint that a finite amount of energy must be stored in any finite volume

of material near the crack tip. These considerations ultimately lead to the conclusion that the stress, strain,

electric field and electric displacement components each have a 1=
ffiffi
r

p
radial dependence.

4.1. Plane strain crack tip fields

Applying the fact that the stresses and electric fields have a 1=
ffiffi
r

p
radial dependence, the derivatives of

the complex potentials F , G and H can be written as
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F 00 ¼ ðaþ ibÞz�1=2 ð4:8Þ

G0 ¼ ðcþ idÞz�1=2 ð4:9Þ

H 00 ¼ ðeþ if Þz�1=2
e ð4:10Þ
In the following subsections the conditions (4.1)–(4.7) will be applied to determine the real coefficients a, b,
c, d, e and f .

4.1.1. b ¼ 0 crack perpendicular to poling direction, electrically conducting

For b ¼ 0 it is useful to rewrite Eqs. (3.19)–(3.25). For b ¼ 0, pe ¼ iae ¼ i=
ffiffiffiffiffiffiffiffiffiffiffiffi
1� ke

p
. Therefore,

ze ¼ xþ iaey, where ae is real. Then, the stresses, electric fields, displacements and electric potential are
rxx ¼ �ReF 00 þRe ð2G0 � �zzG00Þ � a2eReH 00 ð4:11Þ

ryy ¼ ReF 00 þRe ð2G0 þ �zzG00Þ þReH 00 ð4:12Þ

rxy ¼ ImF 00 þ Im ð�zzG00Þ þ aeImH 00 ð4:13Þ

Ex ¼
4ð1þ mÞ
Ed31

ImG0 þ 1� m
Ed31

keaeImH 00 ð4:14Þ

Ey ¼
4ð1þ mÞ
Ed31

ReG0 þ 1� m
Ed31

kea2eReH 00 ð4:15Þ

E
1þ m

ux ¼ �ReF 0 þRe ð7G� �zzG0Þ �ReH 0 ð4:16Þ

E
1þ m

uy ¼ ImF 0 þ Im 7

��
þ 4

d33 � d31
d31

�
Gþ �zzG0

�
þ ae

�
þ 1� m
1þ m

d33 � d31
d31

keae

�
ImH 0 ð4:17Þ

/ ¼ � 4ð1þ mÞ
Ed31

ImG� 1� m
Ed31

keaeImH 0 ð4:18Þ
For the material poled perpendicular to the crack plane, under electrically conducting crack bound-

ary conditions, Eqs. (4.1)–(4.5) imply that the coefficients in Eqs. (4.8)–(4.10) satisfy the following equa-
tions.
a� 1

2
cþ aee ¼ 0 ð4:19Þ

bþ 3

2
d þ f ¼ 0 ð4:20Þ

aþ 3

2
cþ e ¼ KIffiffiffiffiffiffi

2p
p ð4:21Þ

b� 1

2
d þ aef ¼ KIIffiffiffiffiffiffi

2p
p ð4:22Þ

4ð1þ mÞcþ keaeð1� mÞe ¼ 0 ð4:23Þ



Table 1

The coefficients for the plane strain complex potentials with b ¼ 0

Plane strain b ¼ 0 ke ¼
2Ed2

31

jð1�mÞ ae ¼
ffiffiffiffiffiffiffi
1

1�ke

q
DE ¼ keaeð1� mÞ þ 2ðae � 1Þð1þ mÞ DD ¼ keð1� mÞ þ 2ðae � 1Þð1þ mÞ
Conducting Impermeable

a keaeð1� mÞ þ 8aeð1þ mÞ
4DE

KIffiffiffiffiffiffi
2p

p keð1� mÞ d33ð1þ 3aeÞ þ d31ð1� 3aeÞ½ � þ 16d31aeð1þ mÞ
8d31DD

KIffiffiffiffiffiffi
2p

p

þ�keð1� mÞð1þ 3aeÞ
8d31DD

KDffiffiffiffiffiffi
2p

p

b 3keaeð1� mÞ � 8ð1þ mÞ
4DE

KIIffiffiffiffiffiffi
2p

p � Ed31ð1þ 3aeÞ
4DE

KEffiffiffiffiffiffi
2p

p 3keð1� mÞ � 8ð1þ mÞ
4DD

KIIffiffiffiffiffiffi
2p

p

c keaeð1� mÞ
2DE

KIffiffiffiffiffiffi
2p

p keð1� mÞ d31ðae þ 1Þ � d33ðae � 1Þ½ �
4d31DD

KIffiffiffiffiffiffi
2p

p þ keðae � 1Þð1� mÞ
4d31DD

KDffiffiffiffiffiffi
2p

p

d � keaeð1� mÞ
2DE

KIIffiffiffiffiffiffi
2p

p þ Ed31ðae � 1Þ
2DE

KEffiffiffiffiffiffi
2p

p �keð1� mÞ
2DD

KIIffiffiffiffiffiffi
2p

p

e � 2ð1þ mÞ
DE

KIffiffiffiffiffiffi
2p

p �keð1� mÞðd33 � d31Þ � 4d31ð1þ mÞ
2d31DD

KIffiffiffiffiffiffi
2p

p þ keð1� mÞ
2d31DD

KDffiffiffiffiffiffi
2p

p

f 2ð1þ mÞ
DE

KIIffiffiffiffiffiffi
2p

p þ Ed31
DE

KEffiffiffiffiffiffi
2p

p 2ð1þ mÞ
DD

KIIffiffiffiffiffiffi
2p

p

The crack plane is perpendicular to poling direction. The potentials are F 00 ¼ ðaþ ibÞz�1=2, G0 ¼ ðcþ idÞz�1=2 and H 00 ¼ ðeþ if Þz�1=2
e .

The field quantities can then be derived through Eqs. (4.11)–(4.18).
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4ð1þ mÞ
Ed31

d þ keae
1� m
Ed31

f ¼ KEffiffiffiffiffiffi
2p

p ð4:24Þ
Eqs. (4.18)–(4.23) can be solved for the six real coefficients. These coefficients are listed on the left column of

Table 1.
4.1.2. b ¼ 0 crack perpendicular to poling direction, electrically impermeable

For the impermeable electrical conditions Eqs. (4.19)–(4.22) remain valid, however Eqs. (4.23) and (4.24)
do not apply. The electrically impermeable crack boundary conditions, Eqs. (4.6) and (4.7), imply that
ðd33 � d31Þ b
�

þ 3

2
d
�
þ 8

1þ m
1� m

d31
ke

d þ ðd33 þ d31Þf ¼ 0 ð4:25Þ
ðd33 � d31Þ a
�

þ 3

2
c
�
þ 8

1þ m
1� m

d31
ke

cþ ðd33 þ d31Þe ¼
KDffiffiffiffiffiffi
2p

p : ð4:26Þ
Now, Eqs. (4.19)–(4.22), (4.25) and (4.26) are solved for the coefficients a–f . These coefficients are listed in

the right column of Table 1.
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Using the coefficients listed in Table 1 for the complex potentials of Eqs. (4.8)–(4.10), the stress, electric

field, displacement and electric potential components can be determined from Eqs. (4.11)–(4.18). Strain and

electric displacement components can be obtained from the constitutive law, i.e. Eqs. (2.12)–(2.17).
4.1.3. b ¼ p=2 crack parallel to poling direction, electrically conducting

For the cases where the crack is parallel to the poling direction b ¼ p=2. Again for b ¼ p=2 it is useful to

rewrite Eqs. (3.19)–(3.25). In this case, pe ¼ i=ae ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffi
1� ke

p
and ze ¼ xþ iy=ae. Then, the stress, electric

field, displacement and electric potential components are
rxx ¼ �ReF 00 þRe ð2G0 � �zzG00Þ � 1

a2e
ReH 00 ð4:27Þ

ryy ¼ ReF 00 þRe ð2G0 þ �zzG00Þ þReH 00 ð4:28Þ

rxy ¼ ImF 00 þ Im ð�zzG00Þ þ 1

ae
ImH 00 ð4:29Þ

Ex ¼
4ð1þ mÞ
Ed31

ReG0 � 1� m
Ed31

keReH 00 ð4:30Þ

Ey ¼ � 4ð1þ mÞ
Ed31

ImG0 þ 1� m
Ed31

ke
ae
ImH 00 ð4:31Þ

E
1þ m

ux ¼ �ReF 0 þRe 7

��
þ 4

d33 � d31
d31

�
G� �zzG0

�
� 1

�
þ 1� m
1þ m

d33 � d31
d31

�
ReH 0 ð4:32Þ

E
1þ m

uy ¼ ImF 0 þ Im ð7Gþ �zzG0Þ þ 1

ae
ImH 0 ð4:33Þ

/ ¼ � 4ð1þ mÞ
Ed31

ReG� 1� m
Ed31

kea2eReH 0 ð4:34Þ
For the material poled parallel to the crack plane, under electrically conducting crack boundary conditions,

Eqs. (4.1)–(4.5) imply that the coefficients in Eqs. (4.8)–(4.10) satisfy the following equations.
bþ 3

2
d þ f ¼ 0 ð4:35Þ

�aþ 1

2
c� 1

ae
e ¼ 0 ð4:36Þ

aþ 3

2
cþ e ¼ KIffiffiffiffiffiffi

2p
p ð4:37Þ

b� 1

2
d þ 1

ae
f ¼ KIIffiffiffiffiffiffi

2p
p ð4:38Þ

4ð1þ mÞd � keð1� mÞf ¼ 0 ð4:39Þ
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4ð1þ mÞ
Ed31

c� ke
1� m
Ed31

e ¼ KEffiffiffiffiffiffi
2p

p ð4:40Þ
Again, these six equations can be solved for the coefficients and the solutions are tabulated in the left

column of Table 2.
4.1.4. b ¼ p=2 crack parallel to poling direction, electrically impermeable

For the electrically impermeable conditions, Eqs. (4.39) and (4.40) are replaced by those corresponding

to (4.6) and (4.7), which, for b ¼ p=2, are
�ðd33 � d31Þaþ
d33 � d31

2

�
þ 8

1þ m
1� m

d31
ke

�
c� d33 þ d31

ae
e ¼ 0 ð4:41Þ
ðd33 � d31Þb�
d33 � d31

2

�
þ 8

1þ m
1� m

d31
ke

�
d þ d33 þ d31

ae
f ¼ KDffiffiffiffiffiffi

2p
p ð4:42Þ
Now, (4.35)–(4.38) and (4.41) and (4.42) can be solved for the coefficients, and these results are given in the

right column of Table 2.

Using the coefficients listed in Table 2 for the complex potentials of Eqs. (4.8)–(4.10), the stress, electric

field and displacement components can be determined from Eqs. (4.27)–(4.34). Strain and electric dis-

placement components can be obtained from the constitutive law, i.e. Eqs. (2.12)–(2.17).
2

efficients for the plane strain complex potentials with b ¼ p=2

e strain b ¼ p
2

ke ¼
2Ed2

31

jð1�mÞ ae ¼
ffiffiffiffiffiffiffi
1

1�ke

q
DE ¼ keaeð1� mÞ þ 2ðae � 1Þð1þ mÞ DD ¼ keð1� mÞ þ 2ðae � 1Þð1þ mÞ
Conducting Impermeable

keaeð1� mÞ � 8ð1þ mÞ
4DE

KIffiffiffiffiffiffi
2p

p þ Ed31ðae þ 3Þ
4DE

KEffiffiffiffiffiffi
2p

p keð1� mÞ � 8ð1þ mÞ
4DD

KIffiffiffiffiffiffi
2p

p

3keaeð1� mÞ þ 8aeð1þ mÞ
4DE

KIIffiffiffiffiffiffi
2p

p �Ed31ðae þ 3Þ
4jDD

KDffiffiffiffiffiffi
2p

p þ 3jkeð1� mÞþ 8jaeð1þ mÞþEd31ðd33 � d31Þðae þ 3Þ
4jDD

KIIffiffiffiffiffiffi
2p

p

keaeð1� mÞ
2DE

KIffiffiffiffiffiffi
2p

p þ Ed31ðae � 1Þ
2DE

KEffiffiffiffiffiffi
2p

p keð1� mÞ
2DD

KIffiffiffiffiffiffi
2p

p

�keaeð1� mÞ
2DE

KIIffiffiffiffiffiffi
2p

p �Ed31ðae � 1Þ
2jDD

KDffiffiffiffiffiffi
2p

p þ�kejð1� mÞ þ Ed31ðd33 � d31Þðae � 1Þ
2jDD

KIIffiffiffiffiffiffi
2p

p

2aeð1þ mÞ
DE

KIffiffiffiffiffiffi
2p

p � aeEd31
DE

KEffiffiffiffiffiffi
2p

p 2aeð1þ mÞ
DD

KIffiffiffiffiffiffi
2p

p

�2aeð1þ mÞ
DE

KIIffiffiffiffiffiffi
2p

p �2aejð1þ mÞ � aeEd31ðd33 � d31Þ
jDD

KIIffiffiffiffiffiffi
2p

p þ aeEd31
jDD

KDffiffiffiffiffiffi
2p

p

ack plane is parallel to poling direction. The potentials are F 00 ¼ ðaþ ibÞz�1=2, G0 ¼ ðcþ idÞz�1=2 and H 00 ¼ ðeþ if Þz�1=2
e . The

uantities can then be derived through Eqs. (4.27)–(4.34).
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4.2. Plane stress crack tip fields

Under plane stress conditions, the derivatives of the complex potentials P , Q and S can be written as
P 00 ¼ ðmþ inÞz�1=2 ð4:43Þ

Q00 ¼ ðp þ iqÞz�1=2
r ð4:44Þ

S00 ¼ ðr þ isÞz�1=2 ð4:45Þ

In the following subsections the conditions (4.1)–(4.7) will be applied to determine the real coefficients m, n,
p, q, r and s.

4.2.1. b ¼ 0 crack perpendicular to poling direction, electrically conducting

For b ¼ 0, pr ¼ iar ¼ i=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr

p
, with zr ¼ xþ iary, where ar is real. Then, the stresses, electric fields,

displacements and electric potential are
rxx ¼ �ReP 00 � a2rReQ00 ð4:46Þ

ryy ¼ ReP 00 þReQ00 ð4:47Þ

rxy ¼ ImP 00 þ arImQ00 ð4:48Þ

Ex ¼ ImS00 þ d31
j

arImQ00 ð4:49Þ

Ey ¼ ReS00 þ d31
j

a2rReQ00 ð4:50Þ

E
1þ m

ux ¼ �ReP 0 �ReQ0 þ Ed31
1þ m

ReS0 ð4:51Þ

E
1þ m

uy ¼ ImP 0 þ ar 1

�
þ kr
1þ m

d33 � d31
d31

�
ImQ0 þ Ed33

1þ m
ImS0 ð4:52Þ

/ ¼ �ImS0 � d31
j

arImQ0 ð4:53Þ
For the material poled perpendicular to the crack plane, under electrically conducting crack bound-

ary conditions, Eqs. (4.1)–(4.5) imply that the coefficients in Eqs. (4.8)–(4.10) satisfy the following equa-

tions.
nþ q ¼ 0 ð4:54Þ

mþ arp ¼ 0 ð4:55Þ

mþ p ¼ KIffiffiffiffiffiffi
2p

p ð4:56Þ

nþ arq ¼ KIIffiffiffiffiffiffi
2p

p ð4:57Þ
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r þ d31
j

arp ¼ 0 ð4:58Þ
sþ d31
j

arq ¼ KEffiffiffiffiffiffi
2p

p ð4:59Þ
Eqs. (4.54)–(4.59) can be solved for the six real coefficients. These coefficients are listed on the left column of

Table 3.
4.2.2. b ¼ 0 crack perpendicular to poling direction, electrically impermeable

For the impermeable electrical conditions Eqs. (4.54)–(4.57) remain valid, however Eqs. (4.58) and (4.59)

do not apply. The electrically impermeable crack boundary conditions, Eqs. (4.6) and (4.7), imply that
ðd33 � d31Þnþ d33qþ js ¼ 0 ð4:60Þ
ðd33 � d31Þmþ d33p þ jr ¼ KDffiffiffiffiffiffi
2p

p : ð4:61Þ
Now, Eqs. (4.54)–(4.57) and (4.60) and (4.61) are solved for the coefficients. These coefficients are listed in
the right column of Table 3.

Using the coefficients listed in Table 3 for the complex potentials of Eqs. (4.8)–(4.10), the stress, electric

field, displacement and electric potential components can be determined from Eqs. (4.46)–(4.53). Strain and

electric displacement components can be obtained from the constitutive law, i.e. Eqs. (2.12)–(2.17).
3

efficients for the plane stress complex potentials with b ¼ 0

e stress b ¼ 0 kr ¼
Ed2

31

j ar ¼
ffiffiffiffiffiffiffi
1

1�kr

q

Conducting Impermeable

ar
ar � 1

KIffiffiffiffiffiffi
2p

p ar
ar � 1

KIffiffiffiffiffiffi
2p

p

� 1

ar � 1

KIIffiffiffiffiffiffi
2p

p � 1

ar � 1

KIIffiffiffiffiffiffi
2p

p

� 1

ar � 1

KIffiffiffiffiffiffi
2p

p � 1

ar � 1

KIffiffiffiffiffiffi
2p

p

1

ar � 1

KIIffiffiffiffiffiffi
2p

p 1

ar � 1

KIIffiffiffiffiffiffi
2p

p

d31
j

ar
ar � 1

KIffiffiffiffiffiffi
2p

p � d33
j

�
� ar
ar � 1

d31
j

�
KIffiffiffiffiffiffi
2p

p þ KD

j
ffiffiffiffiffiffi
2p

p

� d31
j

ar
ar � 1

KIIffiffiffiffiffiffi
2p

p þ KEffiffiffiffiffiffi
2p

p � d31
j

1

ar � 1

KIIffiffiffiffiffiffi
2p

p

ack plane is perpendicular to poling direction. The potentials are P 00 ¼ ðmþ inÞz�1=2, Q00 ¼ ðp þ iqÞz�1=2
r and S00 ¼ ðr þ isÞz�1=2.

ld quantities can then be derived through Eqs. (4.46)–(4.53).
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4.2.3. b ¼ p=2 crack parallel to poling direction, electrically conducting

For the cases where the crack is parallel to the poling direction b ¼ p=2. Again for b ¼ p=2 it is useful to

rewrite Eqs. (3.31)–(3.37). In this case, pr ¼ i=ar ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr

p
and zr ¼ xþ iy=ar. Then, the stress, electric

field, displacement and electric potential components are
rxx ¼ �ReP 00 � 1

a2r
ReQ00 ð4:62Þ

ryy ¼ ReP 00 þReQ00 ð4:63Þ

rxy ¼ ImP 00 þ 1

ar
ImQ00 ð4:64Þ

Ex ¼ ImS00 � d31
j

ReQ00 ð4:65Þ

Ey ¼ ReS00 þ d31
j

1

ar
ImQ00 ð4:66Þ

E
1þ m

ux ¼ �ReP 0 � 1

�
þ kr
1þ m

d33 � d31
d31

�
ReQ0 þ Ed33

1þ m
ImS0 ð4:67Þ

E
1þ m

uy ¼ ImP 0 þ 1

ar
ImQ0 � Ed31

1þ m
ReS0 ð4:68Þ

/ ¼ �ImS0 þ d31
j

ReQ0 ð4:69Þ
For the material poled parallel to the crack plane, under electrically conducting crack boundary conditions,

Eqs. (4.1)–(4.5) imply that the coefficients in Eqs. (4.8)–(4.10) satisfy the following equations.
nþ q ¼ 0 ð4:70Þ

mþ 1

ar
p ¼ 0 ð4:71Þ

mþ p ¼ KIffiffiffiffiffiffi
2p

p ð4:72Þ

nþ 1

ar
q ¼ KIIffiffiffiffiffiffi

2p
p ð4:73Þ

d31
j

qþ r ¼ 0 ð4:74Þ

s� d31
j

p ¼ KEffiffiffiffiffiffi
2p

p ð4:75Þ
Again, these six equations can be solved for the coefficients and the solutions are tabulated in the left

column of Table 4.



Table 4

The coefficients for the plane stress complex potentials with b ¼ p=2

Plane stress b ¼ p
2

kr ¼
Ed2

31

j ar ¼
ffiffiffiffiffiffiffi
1

1�kr

q

Conducting Impermeable

m � 1

ar � 1

KIffiffiffiffiffiffi
2p

p � 1

ar � 1

KIffiffiffiffiffiffi
2p

p

n ar
ar � 1

KIIffiffiffiffiffiffi
2p

p ar
ar � 1

KIIffiffiffiffiffiffi
2p

p

p ar
ar � 1

KIffiffiffiffiffiffi
2p

p ar
ar � 1

KIffiffiffiffiffiffi
2p

p

q � ar
ar � 1

KIIffiffiffiffiffiffi
2p

p � ar
ar � 1

KIIffiffiffiffiffiffi
2p

p

r d31
j

ar
ar � 1

KIIffiffiffiffiffiffi
2p

p � d33
j

�
� ar
ar � 1

d31
j

�
KIIffiffiffiffiffiffi
2p

p þ KD

j
ffiffiffiffiffiffi
2p

p

s d31
j

ar
ar � 1

KIffiffiffiffiffiffi
2p

p þ KEffiffiffiffiffiffi
2p

p d31
j

1

ar � 1

KIffiffiffiffiffiffi
2p

p

The crack plane is parallel to poling direction. The potentials are P 00 ¼ ðmþ inÞz�1=2, Q00 ¼ ðp þ iqÞz�1=2
r and S00 ¼ ðr þ isÞz�1=2. The field

quantities can then be derived through Eqs. (4.62)–(4.69).
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4.2.4. b ¼ p=2 crack parallel to poling direction, electrically impermeable

For the electrically impermeable conditions, Eqs. (4.74) and (4.75) are replaced by those corresponding

to (4.6) and (4.7), which, for b ¼ p=2, are
ðd33 � d31Þmþ d33
ar

p � js ¼ 0 ð4:76Þ
ðd33 � d31Þnþ
d33
ar

qþ jr ¼ KDffiffiffiffiffiffi
2p

p ð4:77Þ
Now, (4.70)–(4.73) and (4.76) and (4.77) can be solved for the coefficients, and these results are given in the

right column of Table 4.

Using the coefficients listed in Table 4 for the complex potentials of Eqs. (4.8)–(4.10), the stress, electric

field, displacement and electric potential components can be determined from Eqs. (4.62)–(4.69). Strain and

electric displacement components can be obtained from the constitutive law, i.e. Eqs. (2.12)–(2.17).

Note that in Tables 3 and 4 the coefficients m, n, p and q do not depend on the type of electrical boundary

conditions specified in the problem. This result is due to the fact that the stresses in the plane stress
problems only depend on two of the three potentials, and that the mechanical boundary conditions gov-

erning the asymptotic fields, Eq. (4.1), only specify tractions on the boundary. However, if the macroscopic/

outer problem contains displacement boundary conditions, then the stress intensity factors KI and KII can

depend on the applied displacements and applied electrical loads.
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4.3. Irwin matrices

The intensity factors KI, KII, and KE or KD characterize the mechanical and electrical fields in the vicinity

of the crack tip, and are dependent on both specimen geometry and loading. As an example, consider a
through-crack of length 2a lying along the x-axis in an infinite piezoelectric body subjected to far field

stresses and electric fields r1
xx , r

1
xy , r

1
yy , E

1
x and E1

y . The stress, electric field and electric displacement in-

tensity factors for this type of specimen are, KI ¼ r1
yy

ffiffiffiffiffiffi
pa

p
, KII ¼ r1

xy

ffiffiffiffiffiffi
pa

p
, and KE ¼ E1

x

ffiffiffiffiffiffi
pa

p
(conducting) or

KD ¼ D1
y

ffiffiffiffiffiffi
pa

p
(impermeable), where D1

y is related to the far field stresses and electric fields through the

appropriate constitutive equation, Suo et al. (1992). Note that these expressions are valid for any arbitrary

value of the angle b, but in general, for other geometries or loadings, the expressions for the intensity

factors will not be as simple as the ones listed above and will depend on b.
In addition to the intensity factors, another fracture quantity of interest is the energy release rate G. The

energy release rate is directly related to the intensity factors. This relationship can be determined by per-

forming a crack closure integral, i.e.
Gda ¼ 1

2

Z da

0

ryyðrÞDuyðda� rÞ þ rxyðrÞDuyðda� rÞ þ /ðrÞDDyðda� rÞdr ðconductingÞ ð4:78Þ

Gda ¼ 1

2

Z da

0

ryyðrÞDuyðda� rÞ þ rxyðrÞDuyðda� rÞ þ DyðrÞD/ðda� rÞdr ðimpermeableÞ ð4:79Þ
Here, f ðrÞ represents the quantity ahead of the crack tip on the plane where h ¼ 0, and

DgðrÞ ¼ gðr; h ¼ pÞ � gðr; h ¼ �pÞ represents the jump in the quantity behind the crack tip.

Equivalently, G can be evaluated with the electromechanical form of the J -integral as
G ¼ J �
Z
C
hnx � rijnjui;x þ DiniEx dC ð4:80Þ
where C is a counterclockwise contour (around a crack tip growing to the right) encircling the crack tip, and

h is the electrical enthalpy, which for a linear piezoelectric material is given as
h ¼ 1

2
ðrijeij � EiDiÞ ð4:81Þ
The Irwin matrix, H , relates the intensity factors, KI, KII, and KE or KD, to the energy release rate G. The
relationship is given here as
G ¼ KII KI KEð Þ
HE

11 HE
12 HE

13

HE
12 HE

22 HE
23

HE
13 HE

23 HE
33

2
4

3
5 KII

KI

KE

0
@

1
A ð4:82Þ
for conducting crack boundary conditions, or
G ¼ KII KI KDð Þ
HD

11 HD
12 HD

13

HD
12 HD

22 HD
23

HD
13 HD

23 HD
33

2
4

3
5 KII

KI

KD

0
@

1
A ð4:83Þ
for impermeable crack boundary conditions. Note that the Irwin matrix is symmetric. If the Irwin matrix is

known for any arbitrary angle b, then its components can readily be computed for any other angle, Suo

et al. (1992). For example, take the unprimed components to be those when b ¼ 0, then the components for

some other angle b are
H 0
11 ¼ H11 cos

2 bþ H22 sin
2 bþ 2H12 sin b cos b ð4:84Þ



Table 5

The Irwin matrices for plane stress (superscript r), plane strain (superscript e), conducting (superscript E) and impermeable (superscript

D) crack boundary conditions

kr ¼
Ed2

31

j

ar ¼
ffiffiffiffiffiffiffi
1

1�kr

q
9=
; !

DE ¼ keaeð1� mÞ þ 2ðae � 1Þð1þ mÞ
DD ¼ keð1� mÞ þ 2ðae � 1Þð1þ mÞ
ke ¼

2Ed2
31

jð1�mÞ ae ¼
ffiffiffiffiffiffiffi
1

1�ke

q
d15 ¼ d33 � d31

9>>>=
>>>;

!

All of these matrices are given for b ¼ 0. Results for general b can be obtained through the use of Eqs. (4.84)–(4.89).
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H 0
22 ¼ H11 sin

2 bþ H22 cos
2 b� 2H12 sin b cos b ð4:85Þ

H 0
12 ¼ ðH22 � H11Þ sin b cos bþ H12ðcos2 b� sin2 bÞ ð4:86Þ

H 0
13 ¼ H13 cos bþ H23 sin b ð4:87Þ

H 0
23 ¼ �H13 sin bþ H23 cos b ð4:88Þ

H 0
33 ¼ H33 ð4:89Þ
where the H 0 components are those for an arbitrary angle b as shown in Fig. 2. The unprimed components

are given in Table 5 for plane strain, plane stress, conducting and impermeable crack boundary conditions.
5. Discussion

Complex potentials for the solution of in-plane, linear piezoelectric boundary value problems for a

special class of materials with degenerate piezoelectric properties have been presented. This class of linear

material properties is of considerable interest for non-linear constitutive models of ferroelectric behavior. It

is envisioned that the asymptotic solutions presented here will be used to provide boundary conditions for

‘‘small scale switching’’ type analyses of the non-linear switching behavior near crack tips in ferroelectrics.

Furthermore, when using the simplified set of constitutive properties, E, m, j, d33, d31 and d15 ¼ d33 � d31, the
complex potentials can provide closed-form solutions to a wide range of boundary value problems. Such
closed-form solutions are useful when attempting to ascertain the effects of the material properties on the

electromechanical fields or other physical quantities in a given problem.
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Finally, the complex potentials derived in Section 3 were applied to determine the asymptotic fields near

a crack tip in a piezoelectric material. Solutions for both conducting and impermeable electrical crack face

boundary conditions were obtained. The configurations with the crack perpendicular and parallel to the

poling direction were solved explicitly, and the Irwin matrices were given in closed form for the crack plane
oriented at any arbitrary angle to the poling direction.
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