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Abstract

In this paper, complex potentials for the solution of two-dimensional, in-plane, linear piezoelectric boundary value
problems are presented. These potentials are only valid for a special set of piezoelectric properties that have been
identified as being useful in nonlinear ferroelectric constitutive laws. In contrast to more general solution procedures
like the Stroh or Lekhnitskii formalisms, the complex potentials derived here are dependent on explicit, closed-form
combinations of the piezoelectric material properties. Under either plane strain or plane stress conditions, three
complex potentials are required to determine the full set of electrical and mechanical field quantities. The components
of stress, strain, displacement, electric field, electric displacement, and electric potential will all be given in terms of these
three potentials. To demonstrate the solution to a boundary value problem with these potentials, the asymptotic fields
near a crack tip in these materials are presented in closed form.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the past few decades, the analysis of linear piezoelectric boundary value problems has become
relatively well-developed (Barnett and Lothe, 1975; Deeg, 1980; Sosa, 1991, 1992; Suo et al., 1992; Pak,
1992; Park and Sun, 1995). These works are essentially extensions of the anisotropic elasticity formalisms of
Lekhnitskii (1950) or Eshelby et al. (1953) and Stroh (1958). More recently, efforts have been made to
establish non-linear phenomenological constitutive laws for ferroelectric materials (Kamlah, 2001; Landis,
2002; McMeeking and Landis, 2002). These types of constitutive laws have potential use for the analysis of
actuator and sensor devices and for the study of the electromechanical fracture behavior of ferroelectrics.
An interesting feature of ferroelectric ceramics that must be incorporated into these non-linear constitutive
laws is that the elastic, dielectric and most importantly the piezoelectric properties of the material can
change as the remanent polarization and strain in the material evolve. This is in contrast to plasticity in
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polycrystalline metals, where the elastic properties of the material are essentially independent of the plastic
deformation.

A considerable simplification to these non-linear constitutive laws is made if the linear properties of the
material are assumed to take the following forms, Landis (2002),

1+v \
S,»Ejkl =5 (001 + 00 ) — Eéijékl (1.1)
Kf;/- = Ka,‘j (12)
T d A
dkij = FO d;gmkm,-mj + dglmkﬂv,i,- + % (m,—/ij + mj-il-k) (13)

where J;; is the Kronecker delta, the Cartesian components of the remanent polarization vector are P, its
magnitude is P' = /PrPI, the components of its direction are m; = P'/P" and the components of the
transversely isotropic second rank tensor 4 are 4; = 6;; — m;m;. The components of the elastic compliance
measured at constant electric field are s, the dielectric permittivities at constant stress are i, and the
piezoelectric coefficients are dy;. Finally, £ and v are the Young’s modulus and Poisson’s ratio of the
material at constant electric field, « is the dielectric permittivity at constant stress, and ds3, d3; and d;s are
the piezoelectric coefficients in standard Voight notation. Note that the elastic compliance and dielectric
permittivity are isotropic tensors, and the piezoelectric tensor is transversely isotropic about the remanent
polarization direction m.

The reason why the forms for the linear properties given in Egs. (1.1)—(1.3) simplify the non-linear
constitutive theories for ferroelectrics is that in these theories, derivatives of the linear properties with
respect to the remanent polarization and remanent strain components are required, Landis (2002). In-
spection of (1.1)—(1.3) yields the fact that none of the properties depends on the remanent strain compo-
nents and hence all derivatives with respect to the remanent strains are zero. Furthermore, the elastic
compliance and dielectric permittivity do not depend on the remanent polarization, so the derivatives of
these tensors with respect to the P are zero as well. Finally, the piezoelectric properties dj; do depend on P},
and this is a physical requirement for ferroelectrics. This feature manifests itself in the fact that unpoled
ferroelectrics are not piezoelectric, but poled ferroelectrics exhibit piezoelectricity. However, one final
simplification can be made to the piezoelectric properties that further simplifies the non-linear ferroelectric
constitutive laws. This simplification is obtained by requiring that

Pdy;

aPyZ@P; :O—>d15 :d33 —d31 (14)

While mathematical simplicity is a noble goal in any model of a physical system, such desire for simplicity is
always superseded by the need for physical authenticity. Hence, the question as to whether d\5 = d33 — dj; is
a reasonable approximation must be addressed. The answer to this question is, in fact, yes for poled
polycrystalline ferroelectric ceramics. For example, the properties for poled barium titanate are
dz3 = 5.73 x 107" C/N, d3; = —2.37 x 107" C/N and d;s = 8.10 x 107! C/N as reported by Berlincourt
and Jaffe (1958). Also, the properties reported by Deeg (1980) and Pak (1992) for PZT-5H poled ceramic
are ds3 = 3.15 x 1071 C/N, d5; = —1.28 x 1071 C/N and d;s = 4.82 x 1079 C/N. Hence, it is reasonable to
make the assumption that djs = ds3 — d5; for poled ceramics. Note that it is not advisable to make this
assumption for single crystal ferroelectrics.

Given the properties in Eqs. (1.1)—(1.3) along with the simplification that d\5 = ds3; — d3, it is useful to
develop a linear piezoelectricity theory for in-plane electromechanical loading on such a material. The
initial procedure to solve this problem is to apply one of the well-established formalisms for anisotropic
linear piezoelectricity. However, the properties in (1.1)—(1.3) with d5s = d3; — d3; are mathematically
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degenerate, and therefore the standard Stroh or Lekhnitskii procedures must be modified to account for
this degeneracy. In the following, an approach similar to those of Stroh and Lekhnitskii is used to de-
termine complex potentials that will solve in-plane piezoelectricity problems with the material properties
described above. One of the benefits of these assumed forms of the piezoelectric properties is that the
solutions to the in-plane problems can be given in closed-form without the need for the numerical solution
of an eigenvalue problem. Finally, looking forward to the fact that non-linear small scale switching analyses
will eventually be performed with the constitutive law mentioned above, solutions for the asymptotic crack
tip fields for both conducting and impermeable boundary conditions will be obtained with these complex
potentials.

The remainder of this paper is organized as follows. Section 2 outlines the equations governing a two-
dimensional, in-plane, linear piezoelectric boundary value problem. Section 3 then describes the solution
procedures for these equations in both plane strain and plane stress. Section 4 applies the complex
potentials derived in Section 3 to the solution of the asymptotic crack tip solution. Finally, a short dis-
cussion of the results is given in Section 5.

2. Governing equations

In this section the equations governing a linear piezoelectric boundary value problem will be presented.
Throughout this paper it is assumed that the material is poled along the x; direction, which forms an angle
of 8 with the y-direction as in Fig. 1. The mechanical field equations will be presented first, followed by the
electrical equations. In the absence of body forces, mechanical equilibrium in the volume of the body is
given as

00y Oy

0 2.1
Ox dy 1)

,
X

Pr

X1

Fig. 1. The coordinate systems for the analysis boundary value problems where the remanent polarization direction lies at an arbitrary
angle f§ from the y-axis. Note that the x;-axis is parallel to the remanent polarization direction by convention. Furthermore, the indices
used for Voight notation are base on this 1-2-3 system.
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where ¢,,, 6,, and a,, are Cartesian components of the Cauchy stress tensor. On the surface of the body the
stresses must be in equilibrium with the surface tractions as

e = Oully + Oy, (2.3)

0 (2.2)

t, = Oyl + 0,0, (2-4)

where ¢, ¢, n, and n, are the components of the traction vector and the outward unit vector normal to the
surface. The strain—displacement relationships are

Ou,

o = = (2.5)
Ou,

Eyy = a—)j (26)
1 (0u, Ou,

where &,,, ¢,, and ¢,, are the components of the infinitesimal strain tensor, and u, and u, are the components
of the displacement vector.

The electrical equations are as follows. In the absence of a free charge density distribution, Guass’ law in
the volume of the material dictates that

oD, 0D,
=0 2.8
o oy (28)
where D, and D, are the components of the electric displacement vector. On the surface of the body,
o = —D.n, — Dyn, (2.9)

where o is the surface free charge density. Finally, the electric field components, E, and E,, can be derived
from the electric potential ¢ as

__09¢

£=-2 (2.10)
__99

E=-% (2.11)

Egs. (2.1)—(2.11) represent eight governing equations for 13 independent field quantities. Note that (2.3),
(2.4) and (2.9) are surface or boundary equations. The remaining five equations required to close the loop on
a given boundary value problem are the constitutive equations for the piezoelectric material. As noted
previously, it is assumed that the material is poled in the x3;-direction. Furthermore, the piezoelectric
properties take on the special forms described in Section 1. Specifically, the constitutive law can be written as

1 v A .
Exx = Eo—xx - Eo—yy - Eo_zz + (d33 s IB)Ev + (d31 Cos .B)Ev (212)
v 1 v .
&y = — Eaxx + any - E Oz + (d31 s ﬁ)Ex + (d33 Cos ﬁ)Ey (213)

v v 1 .
&y = —Eaxx — EJW — EO’ZZ + (ds1 sin B)E, + (d51 cos B)E, (2.14)
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_1+V d33—d31

&y = Z Oy +— 3 (E,cos f + E, sin f§) (2.15)
Dx = (d33 sin ﬁ)axx + (dgl sin ﬁ)ayv + (d31 sin ﬁ)azz —+ [(d33 — d}l) COS ﬂ]O'Xy + KEX (216)
D, = (ds1 cos B)oy + (ds3 cos f)a,, + (ds; cos f)o.. + [(ds3 — ds1) sin floy, + KE, (2.17)

Here E and v are Young’s modulus and Poisson’s ratio of the material measured at constant electric field.
Note that an E without a subscript is used to denote Young’s modulus, and an £ with a subscript is used to
denote an electric field component. The out of plane axial stress is denoted as a... The piezoelectric co-
efficients are ds; and ds;. Here, the 1, 2, 3 notation follows standard Voight notation for piezoelectric
materials with the three directions aligned with the remanent polarization. Also note that in Voight no-
tation, this form of the material properties assumes that djs = d3; — d3;. Finally, x is the dielectric per-
mittivity of the material measured at constant stress. Again, we emphasize that Eqgs. (2.12)—(2.17) are not
the most general form for a poled ceramic, but rather a very specific special form of the linear constitutive
behavior which is useful within nonlinear material laws for ferroelectrics described in Section 1.

Lastly, a few caveats should be mentioned when applying Eqgs. (2.1)-(2.17) to poled ferroelectrics. First,
these equations are valid for a material sample with a uniform distribution of remanent polarization and
therefore a uniform distribution of piezoelectric properties. Furthermore, the strain and electric displace-
ment components appearing in these equations are actually changes from the zero stress and zero electric
field remanent configuration. This also implies that when there is no stresses or electric fields applied to the
sample, there will be a surface free charge density on any surface with a component of its unit normal
parallel to the remanent polarization direction. Hence, the surface free charge density w appearing in Eq.
(2.9) is actually the level of free charge above the reference level of wy = —P/n; which is required to
equilibrate the initial remanent polarization. Finally, the constitutive equations are only valid in the ab-
sence of domain switching. In other words the remanent polarization and remanent strain must remain
fixed at all points in the body.

3. Solution procedure

3.1. Plane strain

For the plane strain problem, the axial strain normal to the x—y plane is set to zero, and the out of plane
axial stress can be solved as

0. = V(04 + 0,,) — Ed3; (E, sin f + E, cos f5) (3.1

Now the Airy’s stress function y is introduced such that the equilibrium equations, (2.1) and (2.2), are
satisfied if

Oy
" = 2o 32
T =52 (3.2)
%y
Oy =32 (3.3)
i (3.4)

To =7 x0y
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Furthermore, Egs. (2.5)—(2.7) can be combined into a compatibility equation as
0%e,, N D%, 3 ey
0?2 Ox0y

Now Eqgs. (3.2)—(3.4) and (2.6) can be substituted into (3.1) and the constitutive Egs. (2.12)—(2.17). Then,

the constitutive equations for the strains and electric displacements can be substituted into the compatibility

equation (3.5) and Gauss’ law (2.8). Egs. (3.5) and (2.8) then result in two governing partial differen-
tial equations for the Airy’s stress function and the electric potential. The final simplified forms for these
equations are as follows:
1 —?
E

-0 (3.5)

.0 0
V4x—d31(1+v)<smﬁa+cos[)’@>v2¢:0 (3.6)

.0 d .0 o\’
dy (1 —&—v)(mnﬁa—i—cosﬁa—y)sz—Kqu’)—i—Edfl(smﬁ&—i—cosﬂ@) ¢=0 (3.7)

where V? is the two-dimensional Laplacian operator, and V* = V2V? is the biharmonic operator. The
general solution to these equations can be found by taking y and ¢ to be functions of a complex variable
z, =x + py (p is complex) in the following ways

1 =a,f(z) 38
b =ayf'(z) (3.9)
where f'(z,) = df/dz,. Using the relationships
(/)] = /') (3.10)
2 ,
6[/[(213)] = pf'(z) (3.11)

Egs. (3.8) and (3.9) can be substituted into (3.6) and (3.7). This results in an eigenvalue problem with p as
the eigenvalue and (a,,a,) as the associated eigenvector. The solutions for the eigenvalues are

k,sin fcos f +iv/1 —k,
1 —k,cos?f

where i = v —1 and the solutions +i have been explicitly repeated to indicate that a double root exists.
Furthermore, the plane strain electromechanical coupling coefficient £, is

P+i2.43 = +i, £, (3.12)

2Ed3,

e

(3.13)

Note that the system of Egs. (3.6) and (3.7) remains elliptic if &k, < 1. Furthermore, this condition is au-

tomatically satisfied if the material is stable, i.e. if any set of applied stresses and electric fields leads to

positive stored energy in the material. Proof of this fact is readily obtained by noting that the eigenvalues of

the material matrix relating the subset (&, &.., D,) to (0., 0-., E,) must all be positive for a stable material.
The third set of eigenvalues will be renamed such that

_kysinBeos f+iv1 —k, and 3 _kysinfeosf—iv1—k,
pe= 1 — k,cos? B pe= 1 — k,cos? B '

(3.14)
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Throughout this work, an overbar will always represent the complex conjugate of the variable below. Note
that double roots exist in Eq. (3.12), and these identical eigenvalues do not have distinct eigenvectors
associated with them. This fact implies that a second solution of a form different from Egs. (3.8) and (3.9),
corresponding to the second set of eigenvalues at +i, must be determined. This second solution takes the
form

1 =azf (z) + b,zg(2) (3.15)

¢ = ayf(2) + byg(2) (3.16)

where z = x + iy and z = x — iy. Finally, by applying the fact that both y and ¢ are real, it can be shown
that the general solution to Egs. (3.4) and (3.5) takes the form

7 = Re[F(2)] + Re[zG(2)] + Re [H(z,)] (3.17)
¢ = 74(2;1‘}) Re|(sin f — icos B)G(z)] + 1E;31v ¢l ﬁpfi——;glcosﬂH,(zx) (3.18)

Note that F and G are analytic functions of the variable z = x + iy, and H is an analytic function of the
variable z, = x + p.y.

Application of Egs. (3.2)-(3.4) and (2.10) and (2.11) allows for the determination of the stress and
electric field components as

0. = —ReF" +Re(2G' —zG") + Re (p?H") (3.19)
o,, = ReF" + Re(2G' +zG") + ReH” (3.20)
0y = ImF" +Im(zG") — Re (p,H") (3.21)
4(1+v) . . l—v i+

E. = R - G| - Re| —¢ H" 3.22
Ed;, ¢ [(sinf — icos f)G] Ed;, ¢ [sm B+ p.cosf (3:22)

4(1 4+ v) . . l—v P+
E, =— I - G| - Re| —+% H’ 3.23
g Edy [(sin f —icos f)C] Edsy ¢ Lln B+ p.cosf (3:23)

The determination of the displacements requires the exploitation of the Cauchy-Riemann conditions, the
constitutive equations, and strain—displacement relations. It can be shown that to within a rigid body motion

E dyz —dy . .
—u, :Re{—F’—i— {7—1—4u smﬂ(smﬁ—icosﬂ)]G—zG/
1+V 31
1—Vd33—d31 sin,B ,
— |1 H 24
{ +1—|—v dyy sinf+ p.cosf (3.24)
_ / d33_d31 .. —

——u, =Im{ F' 4+ |74+ 4———cos f(cos f+isin ) | G+ zG
1+v ds

1—Vd33—d31 (p2+1)COSﬁ ;
—R A =t H 5. 3.25
e{[p +1—|—v dyy sinf+ p.cosfi (3.25)

Finally, the strain components can either be determined from the stresses and electric fields through the
constitutive law (2.12)—(2.15), or from the displacements through Egs. (2.5)—(2.7). Also, the electric dis-
placement components can be determined from the stress and electric field components through (2.16) and
(2.17).
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3.2. Plane stress
For the plane stress problem o.. = 0. Egs. (3.2)—(3.5) are still valid and the procedure for obtaining the

governing equations for y and ¢ is identical to that used in the plane strain case. The resulting forms of the
compatibility equation and Gauss’ law are

1_, . 0 0 2.
EV xd31(51nﬂax+cosﬁay>v¢0 (3.26)

d31<sinﬁa—ax+cosﬁ%>vzx—xvz¢ =0 (3.27)

Following the solution procedures described previously, three sets of eigenvalues analogous to those found
in Eq. (3.12) exist. However, for the eigenvalues associated with the repeated roots at +i there exist two
distinct sets of eignevectors. Therefore, the solution to Egs. (3.26) and (3.27) has the form

£ = Re[P(2)] + Re[0(z,)] (3.8)
b= —Im[$'(2)] + T Re (sin p + p,cos PO/ (2)] (3.29)
where
 kysinfcos f+ivT —k, _%.

Zg =X+ PsV,  Po = , and k, = (3.30)

1 — k,cos?f3
Here, the governing equations remain elliptic if k, < 1. As for the case of plane strain, this condition
is automatically satisfied if the material is stable. Proof of this fact can be obtained by noting that the
eigenvalues of the material matrix relating (e, D,) to (0., E,) must all be positive for a stable material.

Again, note that the potentials P and S are analytic functions of z and Q is an analytic function of z,. For
plane stress, the stress and electric field components are given as

0. = —ReP’ +Re(p2Q") (3.31)

o, = ReP" + Re Q" (3.32)

oy, = ImP" — Re (p,0") (3.33)
d .

E,=ImS" — %Re [(sin B + p, cos B)Q"] (3.34)

E,=ReS" — %Re[ »(sin B + p, cos B) Q'] (3.35)

Finally, to within a rigid body motion, the displacements are given as

E 1 . d33 .
1 vux € + 1 . e{ |:p0 v ka(smﬁ—i—pa COS,B) (p(,- COSB—‘:— N smﬁ)}Q }

Eds dyy . ,
4—1+‘)Re[<cos[i—za]—31 sm/ﬁ)S} (3.36)
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1+v 1+v :

+ lEj-Mv Im{(jﬁ cos ff — isin ﬁ)S’} (3.37)

1 1 ks . . d .
u, = ImP’ +—Re{ [p——pgv —p—(smﬁ +p,,cosﬂ)(d—Bpﬁcosﬂ+smﬁ)]Q’}
o 31

3.3. Discussion

In this section governing equations for the Airy’s stress function y and the electric potential ¢ have been
solved using complex variable methods. This is in contrast with the Stroh approach, which solves governing
equations for the displacements », and u, and the electric potential, or the approach of Sosa (1991) who
solved equations for Airy’s stress function and an induction potential  that was used to derive electric
displacement components. An approach similar to that of Sosa, but along the lines of Lekhnitskii where the
single Airy’s stress function y is replaced by two components of its vectorial counterpart can also be used.
Finally, a fourth approach using displacements and the induction potential could be applied to the problem
as well. Obviously, these seemingly different methods are intimately related to one another since they each
solve the same problem. The reasons why one approach is or should be chosen over another involve the
simplicity with which the constitutive law can be represented, and the types of boundary conditions that are
presented in a given problem. For example, for boundary value problems where only tractions and electric
potentials are applied to the surface, the approach using y and ¢ offers a small advantage over the others
when analytical solutions are possible. However, since the eigenvalues and eigenvectors are in many cases
determined numerically for general forms of the piezoelectric properties, we emphasize that this advan-
tage is slight. The primary reason for using y and ¢ in this work is due to the specific form of the linear
piezoelectric properties, i.e. Eqs. (2.12)—(2.17).

Finally, note that the stresses for the plane stress case in Eqgs. (3.31)—(3.33) depend on only two of the
three complex potentials. This fact implies that for problems where the mechanical boundary conditions
only contain specified tractions, then the two potentials P(z) and Q(z,) are not dependent on the electrical
boundary conditions specified in the problem. This feature of the plane stress solutions will be illustrated in
the next section in Tables 3 and 4, where the coefficients of P(z) and Q(z,) are shown to be independent of
the electrical crack face boundary conditions.

4. Asymptotic crack tip fields

Due to the inherent brittleness of piezoelectric ceramics, the fracture behavior of these materials has been
the topic of considerable of study, (Sosa, 1991; Suo et al., 1992; Pak, 1992; Dunn, 1994; Park and Sun,
1995; McMeeking, 2001 among others). In this section, the complex potentials derived in Section 3 will
be used to determine the electrical and mechanical fields near the tip of a traction free crack in a linear
piezoelectric material with the properties described in Section 1. The problem will be solved for both
electrically conducting and electrically impermeable crack face boundary conditions. Full solutions will be
given for a material poled perpendicular to the crack plane and for a material poled parallel to the crack
plane. Finally, the Irwin matrix, which relates the energy release rate to the mechanical and electrical in-
tensity factors, will be given for both the conducting and impermeable electrical conditions and arbitrary
orientation of the crack with respect to the poling direction.

Fig. 2 is an illustration of the geometry to be analyzed. The traction free boundary conditions imply that

th=t,=0—0,=0,=0 onf==n (4.1
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X

Fig. 2. The coordinate systems for the analysis of the asymptotic crack tip fields in Section 4. The analyses of the complex potentials in
Section 4 only give explicit results for f = 0 and 8 = n/2. However, the results for the Irwin matrices given in Table 5 are valid for any
p through the use of Egs. (4.78)—(4.83).

Then, the standard stress intensity normalizations imply that
K

0,=——= ontd=0 4.2
»y \/ﬁ ( )

Kn
Oy = on =0 4.3
! \2nr (4.3)
where K and Kjj are the mode I and mode II stress intensity factors. For the electrically conducting crack,
¢p=0—E =0 onl0==n (4.4)

Kg
E = on0=0 4.5
\2mr (435)

Finally, for the electrically impermeable crack,

0w=0—D,=0 onf0=x=n (4.6)

Kp
D,=—— onf=0 4.7
" Vo “.7)

K and K, are the electric field and electric displacement intensity factors. K is also referred to as Ky, Suo
et al. (1992). Note that (4.4)—(4.7) will not both be satisfied within a given problem, (4.4) and (4.5) will be
satisfied for the conducting crack and (4.6) and (4.7) will hold for the impermeable crack. However, (4.1)—
(4.3) are valid for both electrical crack types. Also note that no physical crack is actually impermeable.
However, the condition given by (4.6) is valid for the determination of the fields asymptotically close to the
crack tip. The consideration of a permeable crack simply affects the level of the intensity factor Kp. For
more details on the treatment of permeable cracks see the works of Dunn (1994) and McMeeking (2001).

In all cases we are interested in the dominant terms near the crack tip, i.e. the most singular terms.
However, we will enforce the constraint that a finite amount of energy must be stored in any finite volume
of material near the crack tip. These considerations ultimately lead to the conclusion that the stress, strain,
electric field and electric displacement components each have a 1/./r radial dependence.

4.1. Plane strain crack tip fields

Applying the fact that the stresses and electric fields have a 1/,/r radial dependence, the derivatives of
the complex potentials 7, G and H can be written as
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F" = (a+ ib)z"'/? (4.8)
G = (c+id)z"'? (4.9)
H' = (e +if)z;'? (4.10)

In the following subsections the conditions (4.1)—(4.7) will be applied to determine the real coefficients a, b,
¢, d,eand f.

4.1.1. B =0 crack perpendicular to poling direction, electrically conducting
For =0 it is useful to rewrite Eqgs. (3.19)-(3.25). For =0, p. =ix, =i/+/1 — k.. Therefore,
z, = x + io,,y, where o, is real. Then, the stresses, electric fields, displacements and electric potential are

0. =—ReF" +Re(2G' —zG") — «’Re H" (4.11)
6, = ReF" + Re(2G' +2G") + Re H" (4.12)
oy = ImF" 4+ Im (zG") + o, Im H" (4.13)
4(1+v) 1—v
E, — ImG' ko, Im H" 4.14
Edy 0 T Eay (4.14)
4(1 + V) ' l—v 2 "
E, = R ReH 4.1
) Ed, eG + B k.o Re (4.15)
E . — /
dyz —d l—vdy;—d
oy =ImF +Im|(7+42 56 26| + o+ BB ) Im A (4.17)
l+v dy1 L+v dy
4(1+v) 1—v
=- ImG — k.o ImH' 4.18
? Edy Edy (4.18)

For the material poled perpendicular to the crack plane, under electrically conducting crack bound-
ary conditions, Eqgs. (4.1)-(4.5) imply that the coefficients in Egs. (4.8)—(4.10) satisfy the following equa-
tions.

a—%c—!—cxae:O (4.19)

b+%d+f:0 (4.20)
3 K

+2cte= 421

T T U 4.21)

b—=d+of=—2L 422
PRI (4.22)

4(1 4+ v)e+ ko, (1 —v)e=0 (4.23)
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Table 1
The coefficients for the plane strain complex potentials with f =0
Plane strain =0 k, = j‘?‘i‘z\') s = \/Tk
D = koo, (1 —v) +2(, — 1)(1 +v) Dp =k,(1 —v)+2(at, — 1)(1 +v)
Conducting Impermeable
a koo (1 — v) + 8. (1 +v) Ky ke (1 — v)[da3(1 + 30) + ds1 (1 — 30,)] + 16510 (1 +v) K;
4Dg V2r 8dDp V2r
. —k.(1 —=v)(1+30,) Kp
8d31Dp V2n
b 3k,;0(n(1 - V) - 8(1 + V) K][ B Ed31(1 + 39{,;) KE 3]{,(1 - V) - 8(1 + V) KH
4Dy V2n 4Dy V2n 4Dp V2n
C k,;oﬁ,;(l — V) K] k,(l — V)[d;](an + 1) - d33(0(,, - 1)] K] k,;(ot,; — 1)(1 — V) KD
2D \2n 4d;.Dp V2r 4d3 . Dp V2r
d 7/(,,0([,(1 — V) Ky Ed31(0(n — 1) K —k,;(l — V) Ky
2D \V2n 2Dg V2r 2Dp  \V2n
e _2(1+V) K] —k,.,(l—v)(d33—d31)—4d31(1+v) K] +k,;(1—\1) KD
Dy \2r 2d31Dp V2rn  2d3Dp 2z
f 2(1 + V) K[] Eﬁ KE 2(1 + V) K[]
Dy 2z Dp \V2m Dp V2=n

The crack plane is perpendicular to poling direction. The potentials are F” = (a + ib)z"'/%, G = (¢ + id)z""/* and H" = (e + if)z; /2.
The field quantities can then be derived through Egs. (4.11)—(4.18).

4(1 +v) 1—v Kg
d + ko, f=—==
V2n

Ed; Eds,
Egs. (4.18)—(4.23) can be solved for the six real coefficients. These coefficients are listed on the left column of
Table 1.

(4.24)

4.1.2. B =0 crack perpendicular to poling direction, electrically impermeable
For the impermeable electrical conditions Eqs. (4.19)—(4.22) remain valid, however Eqgs. (4.23) and (4.24)
do not apply. The electrically impermeable crack boundary conditions, Egs. (4.6) and (4.7), imply that

3 1 d
(d33d31)(b+§d> +81—i—: %d+(d33+d31)f:0 (4.25)
3 1+v d31 KD
_ bl = = ) 4.2
(d33 d31)(a+2(3> +81—V k. C+(d33 +d31)€ \/% ( 6)

Now, Eqs. (4.19)—(4.22), (4.25) and (4.26) are solved for the coefficients a—f. These coefficients are listed in
the right column of Table 1.
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Using the coefficients listed in Table 1 for the complex potentials of Egs. (4.8)—(4.10), the stress, electric
field, displacement and electric potential components can be determined from Egs. (4.11)-(4.18). Strain and
electric displacement components can be obtained from the constitutive law, i.e. Egs. (2.12)—(2.17).

4.1.3. p = /2 crack parallel to poling direction, electrically conducting

For the cases where the crack is parallel to the poling direction f = n/2. Again for f = n/2 it is useful to
rewrite Eqgs. (3.19)—(3.25). In this case, p, = i/, = i/1 — k. and z, = x + iy/a.. Then, the stress, electric
field, displacement and electric potential components are

1
0 = —ReF" +Re(2G' —2G") — S ReH" (4.27)
a&
0,, = ReF" + Re(2G' +zG") + ReH" (4.28)
1
6, = ImF" 4+ Im (zG") + —ImH" (4.29)
: m
4(1+v) 1 —v
E, = ReG — k,Re H" 4.30
Edy Y T Eay NC (4.30)
4(1+v) - vk
E,=— ImG +—— —ImH" 4.31
g Eds me Eds o, m (4.31)
E dy; — d 1—vdy—d
=y =-ReF +Re|(74+42 56 30| - (1+——— 2B Ren (4.32)
1+v dy I1+v dy
1
——u,=ImF' +Im(7G +zG') + —ImH’ (4.33)
I+v O
4(1 4 v) I—v
=- ReG — k.o;ReH' 4.34
¢ Edyy ReG ™ g, kRe (4.34)

For the material poled parallel to the crack plane, under electrically conducting crack boundary conditions,
Eqgs. (4.1)-(4.5) imply that the coefficients in Eqs. (4.8)—(4.10) satisfy the following equations.

b+%d+f:0 (4.35)
—a+%07alg€:() (4.36)
a+;c+e:f21_n (4.37)
b_%“%f:% (4.38)

414+ v)d — k(1 —=v)f =0 (4.39)
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4(1+v)c_ 1—ve_ Kg
Ed31 ¢ Ed31 \/27‘5

Again, these six equations can be solved for the coefficients and the solutions are tabulated in the left
column of Table 2.

(4.40)

4.14. p=mn/2 crack parallel to poling direction, electrically impermeable
For the electrically impermeable conditions, Egs. (4.39) and (4.40) are replaced by those corresponding
to (4.6) and (4.7), which, for f = /2, are

_(d33—d31)a+< 332 31+81t:%)c_Me

=0 (4.41)

Ot

(d33 — d31)b — <d33 ; l +38

1 +vd d3; + ds Kp
s )d " f= o (4.42)
Now, (4.35)—(4.38) and (4.41) and (4.42) can be solved for the coefficients, and these results are given in the
right column of Table 2.

Using the coefficients listed in Table 2 for the complex potentials of Egs. (4.8)—(4.10), the stress, electric
field and displacement components can be determined from Egs. (4.27)—(4.34). Strain and electric dis-
placement components can be obtained from the constitutive law, i.e. Egs. (2.12)-(2.17).

Table 2
The coefficients for the plane strain complex potentials with = 7/2

Plane strain =% k, =

Dg = koo, (1 —v) 4+ 2(a; — 1)(1 +v) Dp = k(1 —v)+2(c, — 1)(1 +v)

Conducting Impermeable
a koo (1 —v) —8(1+v) K; +Ed31(0£;; +3) Kz k(1 —v)—8(1+v) K;
4Dg V2n 4Dy \2=m 4Dp V2r
b 3]@9((,(1 7V)+80(8(1 JrV) KH 7Ed31((1£+3) KD 3Kkﬁ(1*V)+8K&8(1+\’)+Ed31(d337d31)(055+3) KH
4Dg V2n 4xDp V2n 4xDp V2n

C kgag(l - V) KI Ed31(0(8 - 1) KE k,(l - V) KI

2Dy \2n 2Dy 2z 2Dp  \2n
d 7kefxe(1 — V) Kll 7Ed31(0((; — 1) KD 71@;}{(1 — V) +Ed31(d33 — d;l)(al; — 1) K][

2D V2r 2xDp V2n 2xDp V2r
e 29(&(1 + V) K[ _ OCEEd:;l KE 29(&(1 + V) K]

Dy 2n Dr 2z Dp  \2n
f —20(};(1 + V) Ky —20(};76(1 + V) — a.Eds (d33 — d31) Ky a.Edyy Kp

Dg V2n kDp V2r  xDp \2m

The crack plane is parallel to poling direction. The potentials are F” = (a + ib)z"'/?, G' = (¢ + id)z"'/* and H" = (e + if)z; /. The
field quantities can then be derived through Eqgs. (4.27)-(4.34).
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4.2. Plane stress crack tip fields

Under plane stress conditions, the derivatives of the complex potentials P, Q and S can be written as

P" = (m+ in)z"/? (4.43)
0" = (p+iq)z,'? (4.44)
S" = (r+is)z '/ (4.45)

In the following subsections the conditions (4.1)—(4.7) will be applied to determine the real coefficients m, n,
p, ¢, r and s.

4.2.1. B =0 crack perpendicular to poling direction, electrically conducting
For =0, p, = io; = i/\/1 — ks, wWith z, = x + ia,y, where a, is real. Then, the stresses, electric fields,
displacements and electric potential are

0. = —ReP’ — «’Re(’ (4.46)
o,y =ReP’ + ReQ’ (4.47)
oy =ImP" + o,Im Q" (4.48)
1" d31 7’
E,=ImS" + " o,ImQ (4.49)
1" d31 2 i
E,=ReS" + 7ocﬁReQ’ (4.50)
E Ed,,
—u, = —ReP —Re(Q Re s’ 4.51
[yt = ~ReP —ReQH7IReS (4.51)
k(; d33 — d3] Ed33
oy =ImP o1+ BB ImS’ 4.52
Iy = +°‘<+1+v & )ime e im (452)
o ' d31 /
¢ =—-ImS — —o,ImQ (4.53)
K

For the material poled perpendicular to the crack plane, under electrically conducting crack bound-
ary conditions, Egs. (4.1)—(4.5) imply that the coefficients in Egs. (4.8)—(4.10) satisfy the following equa-
tions.

n+q=0 (4.54)
m+o,p=0 (4.55)
m+p= f—zl_n (4.56)

nto,q = —L (4.57)
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r+—to,p=0 (4.58)
K

(4.59)

Eqgs. (4.54)—(4.59) can be solved for the six real coefficients. These coefficients are listed on the left column of
Table 3.

4.2.2. B =0 crack perpendicular to poling direction, electrically impermeable
For the impermeable electrical conditions Egs. (4.54)—(4.57) remain valid, however Eqs. (4.58) and (4.59)
do not apply. The electrically impermeable crack boundary conditions, Egs. (4.6) and (4.7), imply that

(ds3 — dsy)n +dyzq + ks = 0 (4.60)

Kp
(d33 d31)m + d33p + Kr \/2_ . (461)
Now, Egs. (4.54)—(4.57) and (4.60) and (4.61) are solved for the coefficients. These coefficients are listed in
the right column of Table 3.
Using the coefficients listed in Table 3 for the complex potentials of Egs. (4.8)—(4.10), the stress, electric
field, displacement and electric potential components can be determined from Egs. (4.46)—(4.53). Strain and
electric displacement components can be obtained from the constitutive law, i.e. Egs. (2.12)—(2.17).

Table 3
The coefficients for the plane stress complex potentials with f =0

2
Plane stress f=0 k, =5 o = /1

K CE 1—ky

Conducting Impermeable
m Oy KI U KI
oy — 121 o — 14271
n 1Ky 1 Ky
oy — 1127 o — 14/2n
’ Lk "
o, — 127 o — 127
q 1 Ky I Ky
o, — 121 a0 — 121
r &y o, K 7(@7 oy @) KI+KD
K o — 121 K o=l K )\2n k21
s _du Ky n K _dun 1 Ky
K o — 121 21 K o, — 1271

The crack plane is perpendicular to poling direction. The potentials are P = (m +in)z"'/2, 0" = (p + iq)z;'/* and S" = (r +is)z""/%.
The field quantities can then be derived through Eqs. (4.46)—(4.53).
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4.2.3. p=mn/2 crack parallel to poling direction, electrically conducting

For the cases where the crack is parallel to the poling direction § = 7/2. Again for f = n/2 it is useful to
rewrite Egs. (3.31)~(3.37). In this case, p, = i/a, = iv/1 — k, and z, = x + iy/a,. Then, the stress, electric
field, displacement and electric potential components are

1
0 = —ReP’ — > ReQ" (4.62)
ao’
o,, = ReP" + Re (" (4.63)
1
6o, =ImP"+—ImQ" (4.64)
: o
E, =ImS" — biRe 0’ (4.65)
K
day 1
E,=ReS" +2L —ImQ" (4.66)
’ K 0
E , ke dy3—dy , . Eds ,
—~ u,=-ReP — (1 2SR ImS 4.67
T+ € <+1+v & > e+, Im (4.67)
1 Edy,
—— u,=ImP +—ImQ — ReS' 4.
[y% =1m —|—% mQ Ty eS (4.68)
d
¢ =—ImS' + %ReQ’ (4.69)

For the material poled parallel to the crack plane, under electrically conducting crack boundary conditions,
Eqgs. (4.1)-(4.5) imply that the coefficients in Eqs. (4.8)—(4.10) satisfy the following equations.

n+q=0 (4.70)
m+ O(ip =0 (4.71)
K
m4p=—L 472
P= (4.72)
1 K
n+—gq= 4.73
O‘aq V 2n ( )
Bl =0 (4.74)
K
3 Kg
_ B, 4.75
V2n “.75)

Again, these six equations can be solved for the coefficients and the solutions are tabulated in the left
column of Table 4.
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Table 4
The coefficients for the plane stress complex potentials with f§ = x/2

Ed?
Plane stress =3 k==L o, =

1
1—kg

Conducting Impermeable
m __1 K __1 K
o, — 121 o — 127
n o, Ku o, Ku
06671\/271: “0*1\/275
p o, Ky o, Ki
o, — 121 ae — 14/2n
q % Ky % Ky
o, — 1421 ae — 1427
r dy o, Kp <d33 o dy\ Ku Kp
a3 a0 Y (T e | S
K “rr_l\/ZTC K 06071 K V2t kV2m

s dy o, K n Ke & 1K
K o, — 121 V21 K o, — 121
The crack plane is parallel to poling direction. The potentials are P = (m + in)z"'/, 0" = (p + iq)z;'/*> and §” = (r + is)z~"/>. The field
quantities can then be derived through Eqgs. (4.62)-(4.69).

4.2.4. p=mn/2 crack parallel to poling direction, electrically impermeable
For the electrically impermeable conditions, Eqgs. (4.74) and (4.75) are replaced by those corresponding
to (4.6) and (4.7), which, for = /2, are

d
(ds3 — dsy)m + %p —Kks=0 (4.76)
ds3 Kp
dyy — dyg)n+—q + kr = —— 4.71
( 33 31) o q \/E ( )

Now, (4.70)—(4.73) and (4.76) and (4.77) can be solved for the coefficients, and these results are given in the
right column of Table 4.

Using the coefficients listed in Table 4 for the complex potentials of Egs. (4.8)—(4.10), the stress, electric
field, displacement and electric potential components can be determined from Eqgs. (4.62)—(4.69). Strain and
electric displacement components can be obtained from the constitutive law, i.e. Egs. (2.12)—(2.17).

Note that in Tables 3 and 4 the coefficients m, n, p and ¢ do not depend on the type of electrical boundary
conditions specified in the problem. This result is due to the fact that the stresses in the plane stress
problems only depend on two of the three potentials, and that the mechanical boundary conditions gov-
erning the asymptotic fields, Eq. (4.1), only specify tractions on the boundary. However, if the macroscopic/
outer problem contains displacement boundary conditions, then the stress intensity factors K7 and Ky can
depend on the applied displacements and applied electrical loads.
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4.3. Irwin matrices

The intensity factors K, K71, and K or K characterize the mechanical and electrical fields in the vicinity
of the crack tip, and are dependent on both specimen geometry and loading. As an example, consider a
through-crack of length 2a lying along the x-axis in an infinite piezoelectric body subjected to far field
stresses and electric fields ¢2¢, oy O EXF and E¥. The stress, electric field and electric displacement in-
tensity factors for this type of specimen are, K; = a7y\/na, Ky = 03;+/na, and Kz = EX\/na (conducting) or
Kp = D}*y/na (impermeable), where DY is related to the far field stresses and electric fields through the
appropriate constitutive equation, Suo et al. (1992). Note that these expressions are valid for any arbitrary
value of the angle f, but in general, for other geometries or loadings, the expressions for the intensity
factors will not be as simple as the ones listed above and will depend on p.

In addition to the intensity factors, another fracture quantity of interest is the energy release rate G. The
energy release rate is directly related to the intensity factors. This relationship can be determined by per-
forming a crack closure integral, i.e.

Gda = % /(M 0, (M) Au,(da — 1) + 04, (r)Au,(da — r) + ¢(r)AD,(6a — r)dr (conducting) (4.78)
0

Goa = % /&l 0, (1) Au,(da — 1) + 04, (r)Au,(da — r) + D, (r)A¢(da — r)dr (impermeable) (4.79)
0

Here, f(r) represents the quantity ahead of the crack tip on the plane where 0 =0, and
Ag(r) = g(r,0 = n) — g(r,0 = —m) represents the jump in the quantity behind the crack tip.
Equivalently, G can be evaluated with the electromechanical form of the J-integral as

G=J= / h}’lx — OinjU;x +D,‘ﬂ,‘Ex dar (480)
r

where I’ is a counterclockwise contour (around a crack tip growing to the right) encircling the crack tip, and
h is the electrical enthalpy, which for a linear piezoelectric material is given as

1
h= 5(0'2/81:]* — E,‘Di) (481)
The Irwin matrix, H, relates the intensity factors, K, Kj;, and Kz or Kp, to the energy release rate G. The
relationship is given here as
(HE HE HE| [Ku
G=(Ku Ki Kp)|HE HE HE|| K (4.82)
| Hiy Hy Hgj | \Ke

for conducting crack boundary conditions, or

[HL HE HB| [Kn

G=(Ku Ki Kp)|H) HYS HZ K (4.83)
LHYy Hy Hi | \Kp

for impermeable crack boundary conditions. Note that the Irwin matrix is symmetric. If the Irwin matrix is
known for any arbitrary angle f3, then its components can readily be computed for any other angle, Suo
et al. (1992). For example, take the unprimed components to be those when f§ = 0, then the components for
some other angle f§ are

1‘[],1 :HIICOSZB+H22 Sin2ﬁ+2H|2 SinﬁCOSﬂ (484)
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Table 5

The Irwin matrices for plane stress (superscript ¢), plane strain (superscript ¢), conducting (superscript £) and impermeable (superscript
D) crack boundary conditions

keoy 1 s, ks 1 0 0
Ed 2, — 1) E 0 T 2(a, = 1) E
kU:Tl . HEC— 0 ke 1 0 HP = 0 ko | % _(@) 1 dy
% =Tk 2, - 1) E 2 |lo,—1 \da) |E 2
- 0 5 0 s L
2 2K 2K
stuel_vz 2(e, — 1)(1 4+ v
Dg = kyoto(1 = v) 4+ 2(a, — 1)(1 +v) D E 0 ( D)E( )d31
Dp = k(1 = v) +2(2, = 1)(1 +v) £ 2k, 1 — v?
k= 2Ed3, = [ — H**= 0 5 = 0
e k(lovy e T 1—k, E
dis = dy; — dy =D +Y) 0 Dp
Dr . Dr 2
2k, 1 -2
Dy, E 0 0
—k, ds : Dg dys dx3 1—1? 1 dis dy
Pe = 0 — 8|2, - — [ )Dp + 4z, - D1 +v) |2
! 4Dp { <d31> T+ [1 <d31> ds } } E  2Dp Kdn) s+ 4 = D) <2
1 dlS d31 DE 1
0 2Dp |:<d31>DE+4(18 1)(1+‘)] K _[TDZ(

All of these matrices are given for = 0. Results for general § can be obtained through the use of Eqgs. (4.84)—(4.89).

H}, = Hy sin® f + Hy cos® f — 2H), sin ff cos 8 (4.85)
H!, = (Hy, — Hy,) sin fcos f + Hy(cos? f — sin® f) (4.86)
H{y = Hyzcos f + Hysin f§ (4.87)
Hyy = —Hi3sin f + Ha3 cos 8 (4.88)
H;, = Hy3 (4.89)

where the H' components are those for an arbitrary angle f as shown in Fig. 2. The unprimed components
are given in Table 5 for plane strain, plane stress, conducting and impermeable crack boundary conditions.

5. Discussion

Complex potentials for the solution of in-plane, linear piezoelectric boundary value problems for a
special class of materials with degenerate piezoelectric properties have been presented. This class of linear
material properties is of considerable interest for non-linear constitutive models of ferroelectric behavior. It
is envisioned that the asymptotic solutions presented here will be used to provide boundary conditions for
“small scale switching” type analyses of the non-linear switching behavior near crack tips in ferroelectrics.
Furthermore, when using the simplified set of constitutive properties, E, v, k, ds3, d3; and dis = d33 — ds1, the
complex potentials can provide closed-form solutions to a wide range of boundary value problems. Such
closed-form solutions are useful when attempting to ascertain the effects of the material properties on the
electromechanical fields or other physical quantities in a given problem.
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Finally, the complex potentials derived in Section 3 were applied to determine the asymptotic fields near
a crack tip in a piezoelectric material. Solutions for both conducting and impermeable electrical crack face
boundary conditions were obtained. The configurations with the crack perpendicular and parallel to the
poling direction were solved explicitly, and the Irwin matrices were given in closed form for the crack plane
oriented at any arbitrary angle to the poling direction.
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